11,154 research outputs found

    The quark-antiquark potential at finite temperature and the dimension two gluon condensate

    Full text link
    A recently proposed phenomenological model, which includes non perturbative effects from dimension two gluon condensates, is applied to analyze the available lattice data for the heavy quark free energy in the deconfined phase of quenched QCD. For large qqˉq\bar{q} separations we recover previous results for the Polyakov loop, exhibiting unequivocal condensate contributions. For the qqˉq\bar{q} potential at finite temperature and finite separation we find that a good overall description of the lattice data can be achieved once the condensate is properly accounted for. In addition, the model predicts a duality between the zero temperature potential as a function of the qqˉq\bar{q} separation, on the one hand, and the quark selfenergy as a function of the temperature, on the other, which turns out to be satisfied to a high degree by the lattice data.Comment: 9 pages, 5 figure

    XMM-Newton view of the double-peaked Fe K-alpha complex in E1821+643

    Full text link
    We present the results of the analysis of the hard band XMM-Newton spectra of the luminous, L(2-10keV)~3.4E+45 erg/s, radio-quiet quasar, E1821+643. Two emission features were observed in the 6-7 keV rest frame band, confirming previous Chandra detection of these structures. We interpret these features as two single emission lines, one consistent with the neutral Fe K-alpha line at 6.4 keV and the other most likely due to FeXXVI. If related to the quasar, the high-energy emission line should originate in highly ionised matter, i.e. the accretion disc or the clouds of the emission line regions. Alternatively, it may be related to the intergalactic medium of the rich galaxy cluster in which E1821+643 is embedded. A composite broad emission line in combination with an absorption line model, however, also fits the data well. We discuss the possible physical interpretations of the origin of these features.Comment: Accepted for publication in A&A, 7 pages and 7 figure

    The XMM-Newton view of PG quasars: II. Properties of the Fe K-alpha line

    Full text link
    The properties of the fluorescence Fe K-alpha emission lines of a sample of 38 quasars (QSOs) observed with XMM-Newton are studied. These objects are included in the optically selected sample from the Palomar-Green (PG) Bright Quasar Survey with an X-ray luminosity 1.3E43<L(2-10 keV)<5.1E45 ergs/s and z<1.72. For each object in the sample, we investigated the presence of both narrow and broad iron lines in detail. A total of 20 out of the 38 QSOs show evidence of an Fe K-alpha emission line with a narrow profile. The majority of the lines are consistent with an origin in low ionization material, which is likely to be located in the outer parts of the accretion disk, the molecular torus, and/or the Broad Line Region. The average properties of the narrow Fe K-alpha emission line observed in the sample are similar to those of Seyfert type galaxies as inferred from recent XMM-Newton and Chandra studies. A broad line has been significantly detected in only three objects. Furthermore, we studied the relationship between the equivalent width (EW) of the iron line and the hard band X-ray luminosity for radio quiet quasars. The analysis indicates that no clear correlation between the strength of the line and the hard X-ray luminosity is present, and our results do not show compelling evidence for an anticorrelation between these two quantities, i.e. the so-called X-ray Baldwin effect.Comment: 10 pages, 3 figures, accepted by A&
    • …
    corecore